3.136 \(\int \frac{\sqrt{\tan (c+d x)} (A+B \tan (c+d x))}{a+i a \tan (c+d x)} \, dx\)

Optimal. Leaf size=236 \[ -\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}+\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d}+\frac{(-B+i A) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d} \]

[Out]

((-1/4 + I/4)*(A + (2 - I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a*d) + ((1/4 - I/4)*(A + (2 - I
)*B)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a*d) + ((1/8 + I/8)*(A - (2 + I)*B)*Log[1 - Sqrt[2]*Sqrt
[Tan[c + d*x]] + Tan[c + d*x]])/(Sqrt[2]*a*d) - ((1/8 + I/8)*(A - (2 + I)*B)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]
] + Tan[c + d*x]])/(Sqrt[2]*a*d) + ((I*A - B)*Sqrt[Tan[c + d*x]])/(2*d*(a + I*a*Tan[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.286259, antiderivative size = 236, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3595, 3534, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}+\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d}+\frac{(-B+i A) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Tan[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x]),x]

[Out]

((-1/4 + I/4)*(A + (2 - I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a*d) + ((1/4 - I/4)*(A + (2 - I
)*B)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a*d) + ((1/8 + I/8)*(A - (2 + I)*B)*Log[1 - Sqrt[2]*Sqrt
[Tan[c + d*x]] + Tan[c + d*x]])/(Sqrt[2]*a*d) - ((1/8 + I/8)*(A - (2 + I)*B)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]
] + Tan[c + d*x]])/(Sqrt[2]*a*d) + ((I*A - B)*Sqrt[Tan[c + d*x]])/(2*d*(a + I*a*Tan[c + d*x]))

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\tan (c+d x)} (A+B \tan (c+d x))}{a+i a \tan (c+d x)} \, dx &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}-\frac{\int \frac{\frac{1}{2} a (i A-B)-\frac{1}{2} a (A-3 i B) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{2 a^2}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} a (i A-B)-\frac{1}{2} a (A-3 i B) x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a^2 d}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}-\frac{\left (\left (\frac{1}{4}+\frac{i}{4}\right ) (A-(2+i) B)\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d}--\frac{\left (\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}--\frac{\left (\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}--\frac{\left (\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}--\frac{\left (\left (\frac{1}{8}-\frac{i}{8}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d}--\frac{\left (\left (\frac{1}{8}-\frac{i}{8}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d}\\ &=\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{\sqrt{2} a d}+\frac{(i A-B) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}--\frac{\left (\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}-\frac{\left (\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}\\ &=-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}+\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{\sqrt{2} a d}+\frac{(i A-B) \sqrt{\tan (c+d x)}}{2 d (a+i a \tan (c+d x))}\\ \end{align*}

Mathematica [A]  time = 1.58294, size = 198, normalized size = 0.84 \[ \frac{(\cos (d x)+i \sin (d x)) (A+B \tan (c+d x)) \left (4 (A+i B) \sin (c+d x) (\sin (d x)+i \cos (d x))+(1+i) (-\sin (c)+i \cos (c)) \sqrt{\sin (2 (c+d x))} \sec (c+d x) \left ((A+(2-i) B) \sin ^{-1}(\cos (c+d x)-\sin (c+d x))+i (A-(2+i) B) \log \left (\sin (c+d x)+\sqrt{\sin (2 (c+d x))}+\cos (c+d x)\right )\right )\right )}{8 d \sqrt{\tan (c+d x)} (a+i a \tan (c+d x)) (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Tan[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x]),x]

[Out]

((Cos[d*x] + I*Sin[d*x])*(4*(A + I*B)*(I*Cos[d*x] + Sin[d*x])*Sin[c + d*x] + (1 + I)*((A + (2 - I)*B)*ArcSin[C
os[c + d*x] - Sin[c + d*x]] + I*(A - (2 + I)*B)*Log[Cos[c + d*x] + Sin[c + d*x] + Sqrt[Sin[2*(c + d*x)]]])*Sec
[c + d*x]*(I*Cos[c] - Sin[c])*Sqrt[Sin[2*(c + d*x)]])*(A + B*Tan[c + d*x]))/(8*d*(A*Cos[c + d*x] + B*Sin[c + d
*x])*Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 0.061, size = 192, normalized size = 0.8 \begin{align*}{\frac{{\frac{i}{2}}B}{ad \left ( \tan \left ( dx+c \right ) -i \right ) }\sqrt{\tan \left ( dx+c \right ) }}+{\frac{A}{2\,ad \left ( \tan \left ( dx+c \right ) -i \right ) }\sqrt{\tan \left ( dx+c \right ) }}-{\frac{2\,iB}{ad \left ( \sqrt{2}-i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}-i\sqrt{2}}} \right ) }+{\frac{A}{ad \left ( \sqrt{2}+i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}+i\sqrt{2}}} \right ) }-{\frac{iB}{ad \left ( \sqrt{2}+i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}+i\sqrt{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x)

[Out]

1/2*I/d/a*tan(d*x+c)^(1/2)/(tan(d*x+c)-I)*B+1/2/d/a*tan(d*x+c)^(1/2)/(tan(d*x+c)-I)*A-2*I/d/a*B/(2^(1/2)-I*2^(
1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)-I*2^(1/2)))+1/d/a/(2^(1/2)+I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1
/2)+I*2^(1/2)))*A-I/d/a/(2^(1/2)+I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)+I*2^(1/2)))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.80759, size = 1477, normalized size = 6.26 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/8*(a*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(2*((a*d*e^(2*I*d*x + 2*I*c) + a*d)*s
qrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)) + (A - I*B
)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - a*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2))*e^(2*I*d*
x + 2*I*c)*log(-2*((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)
)*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)) - (A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - 2
*a*d*sqrt(I*B^2/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt((-I*e^(2*I*d*x + 2*I*
c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(I*B^2/(a^2*d^2)) + I*B)*e^(-2*I*d*x - 2*I*c)/(a*d)) + 2*a*d*sqrt(I*B^2
/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(-((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*
I*d*x + 2*I*c) + 1))*sqrt(I*B^2/(a^2*d^2)) - I*B)*e^(-2*I*d*x - 2*I*c)/(a*d)) - 2*((I*A - B)*e^(2*I*d*x + 2*I*
c) + I*A - B)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sqrt{\tan{\left (c + d x \right )}}}{i \tan{\left (c + d x \right )} + 1}\, dx + \int \frac{B \tan ^{\frac{3}{2}}{\left (c + d x \right )}}{i \tan{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x)

[Out]

(Integral(A*sqrt(tan(c + d*x))/(I*tan(c + d*x) + 1), x) + Integral(B*tan(c + d*x)**(3/2)/(I*tan(c + d*x) + 1),
 x))/a

________________________________________________________________________________________

Giac [A]  time = 1.24527, size = 131, normalized size = 0.56 \begin{align*} -\frac{\left (i - 1\right ) \, \sqrt{2} B \arctan \left (\left (\frac{1}{2} i + \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{2 \, a d} - \frac{\left (i - 1\right ) \, \sqrt{2}{\left (A - i \, B\right )} \arctan \left (-\left (\frac{1}{2} i - \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{4 \, a d} + \frac{A \sqrt{\tan \left (d x + c\right )} + i \, B \sqrt{\tan \left (d x + c\right )}}{2 \, a d{\left (\tan \left (d x + c\right ) - i\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

-(1/2*I - 1/2)*sqrt(2)*B*arctan((1/2*I + 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/(a*d) - (1/4*I - 1/4)*sqrt(2)*(A - I
*B)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/(a*d) + 1/2*(A*sqrt(tan(d*x + c)) + I*B*sqrt(tan(d*x + c
)))/(a*d*(tan(d*x + c) - I))